Рост и развитие всех организмов определяются и контролируются генетической программой. Вы уже знаете, что наследственная информация хранится в структуре молекул ДНК (дезоксирибонуклеиновой кислоты). Другие молекулы РНК (рибонуклеиновой кислоты) — участвуют в реализации этой информации, а именно в биосинтезе белка. Оба указанных типа молекул относятся к нуклеиновым кислотам.
Нуклеиновые кислоты — биополимеры, мономерами которых являются нуклеотиды. Нуклеотиды — это органические вещества, состоящие из трех химических компонентов, соединенных ковалентными связями: моносахарида (пентоза), ортофосфорной кислоты и азотсодержащего основания — вещества с циклическим строением молекулы.
Разнообразие нуклеотидов
Все нуклеотиды содержат одинаковые остатки ортофосфорной кислоты. А различаются они углеводными компонентами и азотсодержащими основами. Моносахаридами, входящими в состав нуклеотидов, могут быть рибоза или дезоксирибоза. Нуклеотиды с рибозой образуют молекулы РНК, с дезоксирибозой — ДНК. Азотсодержащие основы, которые могут входить в состав нуклеотидов, называют аденином, тимином, урацилом, цитозином и гуанином. Сокращенно их обозначают первыми буквами названий веществ: А, Т, У, Ц, Г.
Нуклеотиды способны взаимодействовать друг с другом, формируя длинные цепи. Крепкая ковалентная связь образуется между гидроксильной группой углевода одного нуклеотида и гидроксильной группой ортофосфорной кислоты другого нуклеотида. В результате образованное соединение будет включать с одной стороны остаток ортофосфорной кислоты, а с другой — моносахарида, а потому может взаимодействовать с другим нуклеотидом. Сама молекула ДНК клеток человека содержит последовательно почти 250 млн нуклеотидов. Если эту молекулу развернуть, ее длина составит 85 мм (вспомните для сравнения размеры клетки).
Последовательность «букв» азотсодержащих оснований и является основой кода, которым записана информация в молекулах ДНК и РНК. Как он «работает», мы рассмотрим позже, а теперь рассмотрим особенности строения этих веществ.
Молекула ДНК
Молекулу ДНК можно представить как двойную спираль: она состоит из двух цепей, закрученные друг вокруг друга. Нуклеотиды обеих цепей расположены так, что азотсодержащие основы одной цепи содержатся напротив азотсодержащих оснований другой, образуя пары. Между основаниями возникают слабые водородные связи. Несмотря на слабость, большое их количество (сотни тысяч и миллионы) приводит к тому, что обе цепи прочно держатся вместе.
Основы взаимодействуют между собой так, что напротив основы А первой цепи всегда располагается основа Т другой, а напротив Г — всегда Ц. Такое соответствие в расположении нуклеотидов называется комплиментарностью. Эта закономерность имеет важное значение для обеспечения процессов копирования молекул ДНК и переписки с них информации на молекулы РНК. Вместе с тем такая особенность строения молекулы ДНК приводит к тому, что структура первой цепи комплементарно повторяет структуру второй, то есть из последовательности одной из спиралей может восстанавливаться последовательность другой в случае ее разрушения. Это важно для защиты молекулы ДНК от повреждений вследствие негативных химических или физических воздействий. Итак, такое строение молекулы ДНК обеспечивает выполнение своей основной функции — сохранение наследственной информации. В клетках, которые имеют ядра, молекулы ДНК связаны с белками, называемыми гистонами.
Гистоны — большой класс белков ядра клетки, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре клетки и в регуляции процессов в ядре клетки, таких как транскрипция, репликация и репарация. Существует пять различных типов гистонов H1/Н5, H2A, H2B, H3, H4.
Молекула РНК
Молекулы РНК клеток прокариот и эукариот состоят из одной цепи. Существуют три основных типа РНК, которые различаются местоположением в клетке, структурой и функциями в биосинтезе белка. Информационная, или матричная, РНК (иРНК, или мРНК) переносит наследственную информацию от ДНК к месту синтеза полипептидной цепи. Транспортная РНК (тРНК), которая из всех молекул РНК имеет наименьшие размеры (состоит из 70-90 нуклеотидов), транспортирует аминокислоты к месту синтеза белковых молекул. Рибосомная РНК (рРНК) входит в состав особых органических клеток — рибосом, которые обеспечивают синтез белковой молекулы. Бывают и другие типы РНК.
Ядерная ДНК сохраняется в ядре, там же синтезируются молекулы РНК. Далее РНК транспортируются из ядра клетки в цитоплазму, где синтезируются белки. Приводим сравнительную таблицу двух типов нуклеиновых кислот.
Особенности строения и локализация в клетке | ДНК | РНК |
Количество цепей | 2 | 1 |
Нуклеотидный состав полимера (название нуклеотида предоставляется по названию азотсодержащих основы) | (А) Адениловый (Г) Гуаниловый (Т) тимидиловый (Ц) Цитидиловый |
(А) Адениловый (Г) Гуаниловый (У) Урациловый (Ц) Цитидиловый |
Вещества, образующие нуклеотид | Азотсодержащая основа Ортофосфорная кислота Углевод — дезоксирибоза |
Азотсодержащая основа Ортофосфорная кислота Углевод — рибоза |
Локализация в эукариотической клетке | Ядро, Хлоропласты, Митохондрии | Ядро, Цитоплазма, Рибосомы, Хлоропласты, Митохондрии |
Другие функции нуклеотидов. АТФ.
Некоторые нуклеотиды функционируют в клетках не только как мономеры нуклеиновых кислот, а имеют дополнительные, самостоятельные функции.
Самым главным из таких нуклеотидов является АТФ (аденозинтрифосфат). Этот нуклеотид состоит из аденина, рибозы и трех остатков ортофосфорной кислоты. Особенностью строения этой молекулы является то, что для присоединения последующих остатков ортофосфорной кислоты требуется гораздо больше энергии, чем на присоединение первого — так в клетках накапливается энергия. От синтезированной молекулы АТФ путем гидролиза отщепляется третий остаток ортофосфорной кислоты, накопленная энергия высвобождается и используется для осуществления различных процессов (синтез или разложение химических веществ, изменение их структуры, осуществления движений и т.д.). Уравнение такой реакции:
АТФ + Н2O -> АДФ + Н3РO4 + Е (50 кДж / моль),
где АДФ — аденозинтрифосфорная кислота, Е — энергия, выделяющаяся в результате реакции. Образованная АДФ может дальше расщепляться до аденозинмонофосфорной кислоты (АМФ), но во время этой реакции высвобождается меньше энергии (33-42 кДж / моль). Конечный результат реакций — АМФ является обычным РНК-нуклеотидом и не хранит большого количества энергии.
АТФ — это молекула, является универсальным внутриклеточным переносчиком энергии. Молекулы АТФ могут образовываться за счет энергии, которая выделяется в реакциях бескислородного расщепления глюкозы или окисления органических веществ в митохондриях, за счет энергии света в ходе фотосинтеза и др. Расщепление АТФ происходит всегда, когда клетке нужна энергия для осуществления определенной реакции.
Кроме АТФ в клетках «работают» и другие нуклеотиды. К ним относятся никотинамид (НАД) и никотинамид-фосфат (НАДФ). Эти нуклеотиды переносят химические вещества и являются важными для работы митохондрий и фотосинтеза.