Сила — это произведение массы на сообщенное ей ускорение. При выполнении некоторых трудовых и спортивных движений наибольшая сила мышц достигается либо за счет наибольшего увеличения массы поднимаемого или перемещаемого груза, либо за счет возрастания ускорения, т. е. изменения скорости до максимальной величины. В первом случае увеличивается напряжение мышцы, а во втором — скорость ее сокращения. Движения у человека обычно происходят при сочетании сокращения мышц с их напряжением. Поэтому при возрастании скорости сокращения пропорционально увеличивается и напряжение. Чем больше масса груза, тем меньше сообщаемое ему человеком ускорение.
Максимальная сила мышцы измеряется определением массы максимального груза, который она может сместить. При таких изометрических условиях мышца почти не сокращается, а ее напряжение является предельным. Следовательно, степень напряжения мышцы — выражение ее силы.
Силовые движения характеризуются максимальным напряжением при увеличении массы груза и неизменной скорости его перемещения.
Сила мышцы не зависит от ее длины, а зависит главным образом от ее толщины, от физиологического поперечника, т. е. от количества мышечных волокон, приходящихся на наибольшую площадь ее поперечного сечения. Физиологическим поперечником называется площадь сечения всех мышечных волокон. У перистых и полуперистых мышц этот поперечник больше анатомического. У веретенообразных и параллельных мышц физиологический поперечник совпадает с анатомическим. Поэтому наиболее сильные перистые мышцы, затем полуперистые, веретенообразные и, наконец, наиболее слабые мышцы с параллельным ходом волокон. Сила мышцы зависит также от ее функционального состояния, от условий ее работы, от предельной частоты и величины, пространственной и временной суммации притекающих к ней нервных импульсов, вызывающих ее сокращение, количества функционирующих нейромоторных единиц и от импульсов, регулирующих обмен веществ. Сила мышц повышается при тренировке, снижается при голодании и утомлении. Вначале она увеличивается с возрастом, а затем к старости уменьшается.
Сила мышцы при максимальном ее напряжении, развиваемая при наибольшем ее возбуждении и наиболее выгодной длине до начала ее напряжения, называется абсолютной.
Абсолютная сила мышцы определяется в килограммах или ньютонах (Н). Максимальное напряжение мышцы у человека вызывается волевым усилием.
Относительнаясила мышцы высчитывается следующим образом. Определив абсолютную силу в килограммах или ньютонах, делят ее на число квадратных сантиметров поперечного сечения мышцы. Это позволяет сравнить силу разных мышц одного и того же организма, силу одноименных мышц разных организмов, а также изменения силы одной и той же мышцы данного организма в зависимости от сдвигов ее функционального состояния. Относительная сила скелетной мышцы лягушки 2-3 кг, разгибателя шёи человека — 9 кг, жевательной мышцы — 10 кг, двуглавой мышцы плеча — 11 кг, трехглавой мышцы плеча — 17 кг.
Растяжимость и эластичность
Растяжимостью называется способность мышцы увеличивать длину при действии груза или силы. Растяжение мышцы зависит от массы груза. Чем больше груз, тем больше растягивается мышца. По мере возрастания груза требуется все больший груз или сила для получения одинакового прироста длины. Имеет значение и продолжительность действия груза. При приложении груза или силы в течение 1-2 с происходит удлинение мышцы (быстрая фаза), а затем ее растяжение замедляется и может продолжаться несколько часов (медленная фаза). Растяжимость зависит от функционального состояния мышцы. Красные мышцы растягиваются больше белых. Растяжимость зависит и от типа строения мышцы: параллельные мышцы растягиваются больше перистых.
Скелетные мышцы обладают эластичностью, или упругостью,— способностью возвращаться после деформации в исходное состояние. Эластичность, как и, растяжимость, зависит от функционального состояния, строения мышцы, ее вязкости. Восстановление исходной длины мышцы также происходит в 2 фазы: быстрая фаза продолжается 1-2 с, медленная фаза — десятки минут. Длина мышцы после растяжения, вызванного большим грузом или силой, и после длительного растяжения долго не возвращается к исходной. После кратковременного действия небольших грузов длина мышцы быстрее возвращается к исходной. Таким образом, для эластичности мышцы имеет значение степень и продолжительность ее растяжения. Эластичность мышцы малая, непостоянная и почти совершенная.
Длина анизотропных дисков при сокращении и пассивном растяжении не изменяется. Уменьшение длины мышечного волокна при сокращении и увеличение при его растяжении происходит вследствие изменения длины изотропных дисков. При укорочении волокна до 65% изотропные диски исчезают. Во время изометрического сокращения анизотропные диски укорачиваются, а изотропные удлиняются.
При сокращении увеличивается эластичность изотропных дисков, которые становятся почти в 2 раза длиннее анизотропных. Это предохраняет волокно от разрыва при очень быстром уменьшении длины анизотропных дисков, наступающем при изометрическом сокращении мышцы. Следовательно, растяжимостью обладают только изотропные диски.
Растяжимость увеличивается при утомлении пропорционально возрастанию утомления. Растяжение мышцы вызывает повышение ее обмена веществ и температуры. Гладкие мышцы растягиваются значительно больше, чем скелетные, в несколько раз больше своей первоначальной длины.
Эластичность мышцы уменьшается при контрактурах, при окоченении. В покое эластичность мышцы является свойством миофибрилл, саркоплазмы, сарколеммы и соединительнотканных прослоек, при сокращении — свойством сокращенных миофибрилл.
Растяжение гладких мышц до критического предела может происходить без изменения их напряжения. Это имеет большое физиологическое значение при растяжении гладкой мускулатуры полых органов, в которых при этом не изменяется давление. Например, давление в мочевом пузыре не изменяется при значительном растяжении его мочой.
Работоспособность мышц
Работа мышцы измеряется произведением массы поднятого ею груза на высоту его поднятия или на путь, следовательно, на высоту сокращения мышцы. Универсальной единицей работы, а также количества теплоты, является джоуль (Дж). Работоспособность мышцы изменяется в зависимости от ее физиологического состояния и нагрузки. При увеличении груза работа мышцы вначале увеличивается, а затем после достижения максимального значения уменьшается и доходит до нуля. Начальное увеличение работы при увеличении груза зависит от повышения способности мышцы возбуждаться и от прироста высоты сокращения. Последующее уменьшение работы зависит от понижения сократительной способности мышцы вследствие возрастающего растяжения грузом. Величина работы зависит от количества мышечных волокон и их длины. Чем больше поперечное сечение мышцы, чем она толще, тем больше груз, который она может поднять.
Перистая мышца может поднять большой груз, но так как длина ее волокон меньше длины всей мышцы, то она поднимает груз на сравнительно небольшую высоту. Параллельная мышца может поднять меньший груз, чем перистая, так как ее поперечное сечение меньше, но высота подъема груза больше, так как длина ее мышечных волокон больше. При условии возбуждения всех мышечных волокон высота сокращения мышц при прочих равных условиях тем больше, чем волокна длиннее. На величину работы влияет растяжение мышечных волокон грузом. Первоначальное растяжение небольшими грузами увеличивает высоту сокращения, а растяжение большими грузами уменьшает высоту сокращения мышцы. Работа мышцы зависит также от количества мионевральных аппаратов, от их расположения и от одновременного их возбуждения. При утомлении работа мышцы уменьшается и может прекратиться; высота сокращения мышцы по мере развития утомления понижается, а затем доходит до нуля.
Законы оптимальной нагрузки и оптимального ритма
Так как по мере увеличения груза уменьшается высота сокращения мышцы, то работа, являющаяся произведением груза и высоты, достигает наибольшей величины при некоторых средних нагрузках. Эти средние нагрузки называются оптимальными.
При прочих равных условиях при оптимальных нагрузках мышца сохраняет свою работоспособность наиболее продолжительное время. При оптимальной нагрузке работоспособность мышцы зависит от частоты ритма ее сокращений, т. е. от частоты равномерного чередования сокращений мышцы. Ритм сокращений мышцы при средней нагрузке, при которой сохраняется наиболее продолжительная работоспособность мышцы, называется оптимальным,
У разных мышц оптимальные нагрузки и оптимальный ритм неодинаковы. Они изменяются и у данной мышцы в зависимости от условий работы и ее физиологического состояния.
Оптимальная нагрузка и оптимальный ритм обусловлены прежде всего нервной системой (И. М. Сеченов). Что касается человека, то его умственная и физическая работоспособность определяется социальными условиями труда (орудиями труда, отношением к труду, эмоциями и др.). Оптимальная нагрузка и оптимальный ритм у человека значительно изменяются в зависимости от жизненного опыта, возраста, питания и тренированности.
Динамическая работа и статическое усилие
Работа скелетных мышц, обеспечивающая движения тела и его частей, называется динамической, а напряжение скелетных мышц, обеспечивающее поддержание тела в пространстве и преодоление земного притяжения, называется статическим усилием.
Динамическая работа различается по мощности. Измерителем мощности, или интенсивности, является работа, выполненная в единицу времени. Единица мощности — ватт (вт = 1 Дж/с). Между интенсивностью динамической работы и ее продолжительностью существует закономерное отношение. Чем больше интенсивность работы, тем меньше ее продолжительность. Различают работу малой, умеренной, большой, субмаксимальной и максимальной интенсивности. При динамической работе учитывается скорость, или быстрота движений. Для измерения быстроты движений используются: 1) время двигательной реакции, быстрота реагирования, или латентный период двигательного рефлекса, 2) продолжительность отдельного движения при минимальном напряжении мышц, 3) число движений в единицу времени, т. с. их частота.
Скорость движений зависит от характера и ритма импульсов из центральной нервной системы, от функциональных свойств мышц во время движений, а также от их строения. Способность производить мышечную деятельность определенного вида и интенсивности в течение наибольшего времени обозначается как выносливость. Чем больше выносливость, тем позднее начинается утомление.
Основные виды выносливости: 1) статическая — непрерывное, в течение предельного времени поддерживание напряжения скелетных мышц при постоянной силе давления или удерживании в постоянном положении определенного груза. Предельное время статического усилия тем меньше, чем больше сила давления или величина груза, 2) динамическая — непрерывное выполнение мышечной работы определенной интенсивности в течение предельного времени. Предельное время динамической работы скелетных мышц, зависит от ее мощности. Чем больше мощность, тем короче предельное время динамической выносливости.
Динамическая выносливость в большой степени зависит от повышения работоспособности внутренних органов, особенно сердечнососудистой и дыхательной систем.
Динамическая работа характеризуется также ловкостью.
Ловкость — это способность производить координированные движения с очень большой пространственной точностью и правильностью, быстро и в строго определенные, очень небольшие промежутки времени при внезапной перемене внешних условий.
Статическое усилие состоит в поддержании в течение некоторого времени напряжения мышц, т. е. в удержании веса тела, конечности или груза в неподвижном состоянии. В физическом смысле удерживание груза или тела в неподвижном состоянии не является работой, так как при этом отсутствует движение груза или веса тела. Примерами статических усилий являются неподвижное стояние, вис, упор, неподвижное держание руки, ноги или груза. Продолжительность статического усилия зависит от степени напряжения мышц. Чем меньше величина напряжения мышц, тем оно продолжительнее. При статических усилиях расходуется, как правило, значительно меньше энергии, чем при динамической работе. Расход энергии тем больше, чем тяжелее статическое усилие. Тренировка увеличивает продолжительность статических усилий.
Выносливость к статическим усилиям зависит не от повышения работоспособности внутренних органов, а главным образом от функциональной устойчивости двигательных центров к частоте и силе афферентных импульсов.