Аналоговые микросхемы
Аналоговые интегральные микросхемы (ИМС) предназначены для преобразования аналоговых сигналов. Аналоговые ИМС используют в аппаратуре связи, телевизионной аппаратуре, радиолокации, медицинской технике и тому подобное. Они более разнообразны, чем цифровые и имеют меньшую плотность упаковки элементов.
По конструктивно-технологичным особенностям аналоговые ИМС могут быть гибридными или полупроводниковыми и изготавливаться на биполярных или полевых транзисторах.
Аналоговые микросхемы делятся на две группы. К первой группе относятся ИМС универсального назначения: операционные усилители, матрицы транзисторов, диодов и т.д., ко второй — специализированные аналоговые ИМС. Интегрированные сверхвысокочастотные (СВЧ) — микросхемы считают специализированными ИМС, но они имеют конструктивно технологическую, схемотехническую и функциональную специфику, что является причиной выделения их в отдельную подгруппу.
Среди аналоговых ИМС выделяют также многоцелевые усилители (операционные усилители). Они предназначены для усиления сигналов в широком диапазоне частот. Ими являются усилители низких, промежуточных и высоких частот. Серия аналоговых операционных усилителей охватывает широкий спектр различного функционального назначения, в совокупности дают возможность разрабатывать определенную группу аналоговых устройств в микроэлектронном исполнении.
Аналоговые микросхемы универсальные и многофункциональные. Эти качества закладывают в них при разработке. Многофункциональные микросхемы изготавливают в массовом производстве. Узкоспециализированные ИМС не пользуются большим спросом, производятся в малом количестве или на заказ, поэтому они дорогие. Аналоговым ИМС, особенно операционным усилителям, свойственна функциональная перенасыщенность по большинству параметров. Это позволяет проектировать приборы промышленной электроники на базе интегральных микросхем с высокими техническими и эксплуатационными показателями.
Особенности аналоговой интегральной схемотехники
Аналоговые интегральные микросхемы предназначены для усиления, обработки и преобразования электрических сигналов, параметры которых изменяются по закону непрерывной функции. К таким аналоговым ИМС принадлежат операционные усилители, интегральные стабилизаторы, компаратора и другие схемы, состоящие из базовых схемотехнических элементов, например, элементарных усилительных каскадов, дифференциальных усилителей, каскадов смещения потенциальных уровней, генераторов стабильного тока, источников опорного напряжения, конечных усилительных каскадов. Эти элементарные схемы широко используются как при проектировании известных, так и при создании новых линейных ИМС.
При разработке полупроводниковых аналоговых ИМС большое внимание уделяется повышению технологичности микросхем, то есть уменьшению количества технологических операций. Это достигается использованием транзисторных структур не только как элементов усиления, а также для выполнения функций пассивных элементов, например, как резисторов, конденсаторов и т. д. При этом важно, чтобы у схемы была низкая чувствительность к разбросу параметров, что увеличивает процент выхода годных ИМС .
Для аналоговых микросхем характерно использования обратных связей как с целью повышения электрических характеристик, так и для расширения функциональных возможностей, например, для выборочного усиления, коррекции характеристик и т. п. Поэтому разработчики радиоаппаратуры вводят внешние цепи обратных связей. Необходимо отметить, что в принципиальных схемах ИМС пытаются избежать местных обратных связей. Например, введение глубокого обратной связи для стабилизации режима работы усилительных каскадов по постоянному току (режим покоя) приводит к заметному уменьшению коэффициента усиления. Поэтому чаще всего режим стабилизируют параметрическими способами, используя транзисторные структуры в диодном включении.
Связь между отдельными каскадами в схеме ИМС непосредственная, без переходных конденсаторов. При этом встает проблема согласования как отдельных каскадов в составе микросхемы, так и отдельных микросхем между собой. Для такого согласования необходимо, чтобы потенциалы входящей и исходящей напряжений были близки к потенциалу общей клеммы источника питания. Это достигается, в частности, с помощью каскадов смещения потенциального уровня.
Цифровые микросхемы
Цифровые ИМС — это микроэлектронные схемы, которые используются для преобразования и обработки цифровых сигналов. Цифровые сигналы получают путем дискретизации (оцифровке) аналоговых. Так, если в аналоговой форме данные о температуре любого объекта подаются непрерывным электрическим сигналом с выхода термодатчика, то цифровой сигнал — это последовательность чисел, по значению уровня температуры, измеренной через определенные промежутки времени. При этом чрезвычайно важное значение имеет форма записи чисел.
В быту мы пользуемся десятичными числами. При записи такого числа используется позиционная форма представления чисел, согласно которому мы называем не самое число, а только информацию о том, сколько единиц, десятков, сотен, тысяч и т.д. оно содержит. При формировании цифровых сигналов используется двоичная система счисления. При записи двоичного числа мы отмечаем, сколько единиц, двоек, четверок, восьмерок и разрядов высокого порядка, получаемые подъемом в степень числа 2, оно содержит. Так, например, двоичное число 101 содержит одну единицу, ноль двоек и одну четверку и равное десятичному числу 5, а десятичное число 10 в двоичной форме записывается в виде: 1010 — ноль единиц, одна двойка, ноль четверок, одна восьмерка.
Нетрудно увидеть, что для представления числа в двоичной системе счисления нужно больше разрядов, чем в десятичной системе, то есть двоичное число дольше десятичное. Но двоичное число имеет то преимущество, что для его записи необходимо всего два знака — 0 и 1. Поэтому при электронной записи цифровых сигналов можно ограничиться использованием только двухуровневых сигналов. Итак, цифровой электрический сигнал — это последовательность двухуровневых элементарных сигналов 0 и 1, которые называются логическими сигналами. Для их обработки, например, дешифрации или считывания, сложения или вычитания, хранения или задержки во времени, применяют так называемые логические схемы, а в случае микроэлектронных устройств — цифровые микросхемы.
Серии цифровых микросхем
Цифровые ИМС, как и аналоговые, выпускаются сериями. Микросхемы одной серии имеют одинаковые напряжения питания, электрические и эксплуатационные параметры и при совместном использовании не требуют дополнительных согласующих элементов. Среди большого количества цифровых ИМС можно выделить следующие группы: серии функционально полного состава, серии, специализированные по функциональному назначению и микропроцессорные комплекты ИМС.
Серии первой группы включают ИМС различного функционального назначения: логические схемы, триггеры, регистры, счетчики, дешифраторы и др. Чем шире функциональный состав серии, тем в большей степени она обеспечивает выполнение требований к аппаратуре с точки зрения надежности, компактности, экономичности, технологичности, удобства эксплуатации и ремонта. Некоторые серии состоят из 100 и более типов ИМС. Примерами отечественных серий ИМС с развитым функциональным составом могут служить серии: К500, К155, К555, К176, К561, К564 и др. Такие серии можно называть универсальными с точки зрения широкого их применения.
Серии ИМС второй группы характеризуются более узкой специализацией. К ним относят серии ИМС памяти К537, К565, К556, К573, К1601 и др., Серии ИМС согласования с линиями передачи и управления устройствами (интерфейсные ИМС) К169, К170, К1102.
Серии ИМС третьей группы, которые называются микропроцессорными комплектами, включают ИМС, которые необходимы для построения микропроцессорных вычислительных и управляющих устройств. Сюда входят микропроцессоры, схемы ввода-вывода, таймеры, генераторы, различные вспомогательные ИМС. Примеры микропроцессорных комплектов: К580, К1810, К588, К1801, К1803, К1804 и др.